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The flow around a vertical circular pile exposed to a steady current is studied numeri-
cally and experimentally. The numerical model is a three-dimensional model. The
model validation was achieved against new experimental data (which include two-
component laser-Doppler anemometry (LDA) flow measurements and the hot-film
bed shear stress measurements, and reported in the present paper) and the data of
others, and a k–ω turbulence model was used for closure. The model does not have a
free-surface facility and therefore is applicable only to cases where the Froude number
is small (Fr < O(0.2)). The flow model was used to study the horseshoe vortex and lee-
wake vortex flow processes around the pile. The influence on the horseshoe vortex of
three parameters, namely the boundary-layer thickness, the Reynolds number and the
bed roughness, was investigated. In the latter investigation, the steady solution of the
model was chosen. A study of the influence of the unsteady solution on the previously
mentioned flow processes was also carried out. The ranges of the parameters covered
in the numerical simulations are: The boundary-layer-thickness-to-pile-diameter ratio
is varied from 2 × 10−2 to 102, the pile Reynolds number from 102 to 2 × 106, and the
pile diameter-to-roughness ratio from 2 to about 103. The amplification of the bed
shear stress around the pile (including the areas under the horseshoe vortex and the lee-
wake region) was obtained for various values of the previously mentioned parameters.
The steady-state flow model was coupled with a morphologic model to calculate scour
around a vertical circular pile exposed to a steady current in the case of non-cohesive
sediment. The morphologic model includes (i) a two-dimensional bed load sediment-
transport description, and (ii) a description of surface-layer sand slides for bed slopes
exceeding the angle of repose. The results show that the present numerical simulation
captures all the main features of the scour process. The equilibrium scour depth
obtained from the simulation agrees well with the experiments for the upstream scour
hole. Some discrepancy (up to 30 %) was observed, however, for the downstream scour
hole. The calculations show that the amplification of the bed shear stress around the
pile in the equilibrium state of the scour process is reduced considerably with respect
to that experienced at the initial stage where the bed is plane.

1. Introduction
When a vertical circular pile is placed on the bed in a steady current, the flow will

undergo substantial changes (figure 1): (i) a horseshoe vortex is formed in front of
the pile; (ii) a vortex flow pattern (usually in the form of vortex shedding) is formed
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Figure 1. Definition sketch.

at the lee-side of the pile; and (iii) the streamlines contract at the sides of the pile.
In addition, there exists a downflow as a consequence of flow deceleration in front
of the pile. If the bed is erodible, the overall effect of these changes is generally to
increase the sediment transport, resulting in local scour around the pile. Extensive
scour around the pile may reduce its stability, thus leading to its failure. Incidentally,
both the terms pile and pier are used invariably in the literature (mostly the term pile
in the marine-engineering literature and pier in the hydraulic-engineering literature).
We will use the term pile hereinafter to be consistent with our earlier work (see e.g.
Sumer & Fredsøe 2002).

Scour around piles in steady currents has been investigated extensively (particularly
in the context of scour at bridge piers). Reviews of the subject can be found in
Breusers, Nicollet & Shen (1977), Dargahi (1982), Breusers & Raudkivi (1991),
Richardson & Davies (1995), Dey (1997a, b), Hoffmans & Verheij (1997), Raudkivi
(1998), Whitehouse (1998), Melville & Coleman (2000) and Sumer & Fredsøe (2002).

While much has been written on the subject of flow and scour around piles in steady
currents, comparatively few studies have been presented of the three-dimensional
numerical modelling of these processes.

Briley & McDonald (1981) made Navier–Stokes (N-S) computations of a laminar
steady horseshoe vortex at the junction between an elliptic strut and a flat plate.
Using a three-dimensional incompressible N-S code, Kwak et al. (1986) computed the
laminar steady junction flow. Deng & Piquet (1992) studied the three-dimensional
turbulent flow about an airfoil/flat-plate junction, where the main features of the
horseshoe vortex are captured by the study. An iterative fully decoupled technique
was applied to the Reynolds-averaged N-S equations in this study. A comprehensive
review of the work up to the early 1990s was given by Deng & Piquet (1992).

Three-dimensional numerical calculations of flow around a vertical wall-mounted
cylinder have also been carried out in order to study the scour.
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Olsen & Melaaen (1993) and Olsen & Kjellesvig (1998) were the first to undertake
such calculations in conjunction with the three-dimensional modelling of scour
around a circular pile. The bed material was cohesionless sediment. In Olsen &
Melaaen (1993), the flow was calculated using the steady-state N-S equations on a
three-dimensional non-orthogonal grid. The Reynolds stress terms were solved using
the k–ε turbulence model. Sediment transport equations (with an equation for bed
concentration) were incorporated into the model for scour calculations. Only the
clear-water scour case was simulated in the calculations (i.e. the sediment transport in
the undisturbed case was nil). Comparison was made with experimentally measured
scour patterns, and good agreement was obtained. The study appears to produce the
horseshoe vortex in front of the cylinder (Olsen & Melaaen 1993, figure 4). Olsen &
Kjellesvig (1998) continued the work reported in Olsen & Melaaen (1993). They
essentially used the same formulation as in Olsen & Mallaen (1993). The investigation
was not limited to the initial stage of scour (which was the case in Olsen & Melaaen
1993); rather, the entire scour process was simulated. The scour was in the clear-
water regime (Olsen, personal communication, 2002). The scour depth obtained in
the calculations agreed well with the scour depth obtained from empirical formulae.

Richardson & Panchang (1998) also made three-dimensional calculations of the
flow around a vertical circular cylinder. The calculations were made for three cases:
one with a rigid plane bed, the second with an intermediate ‘frozen’ scour hole and
the third one with an equilibrium ‘frozen’ scour hole. The latter scour holes were
‘copies’ of those measured in Melville & Raudkivi’s (1977) clear-water experiment.
Turbulence closure was achieved through a number of advanced schemes, including
Prandtl’s mixing-length theory, the eddy-viscosity model, the two-equation k–ε model,
and the renormalized group (RNG) theory. As in the work of Olsen and co-workers,
the steady solution of flow was obtained, and the horseshoe vortex was resolved. No
scour simulation (with a live bed) was undertaken.

Tseng, Yen & Song (2000) were the third group of workers to make three-
dimensional calculations of the flow around a vertical wall-mounted cylinder (exposed
to a steady current). They used large-eddy simulation (LES). In the calculations, both
the horseshoe vortex and the vortex shedding were resolved. The model results
were validated against the results of Dargahi’s (1989) experiments. Subsequently,
simulation runs were undertaken to study various properties of the three-dimensional
flow around both circular and square cylinders. Although the implications of the flow
for scour processes were discussed, no scour simulation was undertaken.

Chen (2002) employed a Reynolds-averaged N-S method to predict scour in an array
of piers in a side-by-side arrangement (complex pier configuration). The bed material
was cohesive sediment, and the scour rate is assumed to vary linearly with the bed
shear stress. The latter made it relatively easy to calculate the bed morphology. The
horseshoe vortices were resolved in front of the piers. Calculations were performed for
two kinds of complex pier configurations: (i) for a model scale complex rectangular
pier configuration and (ii) for a prototype complex circular pier configuration. This
was to illustrate the general capabilities of the method for prediction of combined
global and local pier scour.

The research presented in the present paper was stimulated by the work of Olsen &
Melaaen (1993) and Olsen & Kjellesvig (1998). They were the only ones to simulate
the actual scour process in cohesionless sediment; but the scour was in the clear-water
regime whereas the present investigation deals with a live bed.

With a flow/scour model used in the present study, processes responsible for scour
could be studied numerically (particularly for conditions that cannot be achieved, or



354 A. Roulund, B. M. Sumer, J. Fredsoe and J. Michelsen

are difficult to achieve, in the laboratory), addressing questions such as: (i) What is the
effect of the pile Reynolds number on the horseshoe vortex, one of the key elements of
the scour process? (ii) Likewise, what is the effect of the thickness of the approaching
boundary layer? (iii) Similarly, what is the effect of the bed roughness? (iv) What is
the ‘amplification’ in the bed shear stress around the pile (another important element
regarding the scour process), and what is the effect of the aforementioned parameters
on this amplification? (v) What is the influence of the unsteady flow solution (where
the vortex shedding is resolved) on the horseshoe vortex? (vi) What is the bed shear
stress inside a live scour hole and how does it evolve as the scour process continues?
etc.

The purpose of the present investigation is to study the flow and live-bed scour
around a circular pile exposed to a steady current in cohesionless sediment. To this
end, a three-dimensional flow code, EllipSys3D, has been employed to simulate the
flow, both with a rigid plane bed and with a sediment bed undergoing scour; and the
flow code together with a morphodynamic model have been implemented to simulate
the actual live-bed scour process around the pile. The numerical model has enabled
us to study the flow and scour processes, particularly in relation to the issues referred
to in the preceding paragraph.

2. Hydrodynamic model
2.1. Governing equations

The three-dimensional general purpose flow solver, EllipSys3D, was used to calculate
the flow. It is an incompressible general purpose N-S solver. It is a multiblock
finite-volume numerical model that solves the incompressible Reynolds-averaged N-S
equations

∂ρUi

∂t
+

∂ρUiUj

∂xj

= − ∂p

∂xi

+
∂

∂xj

[
(µ + µT )

(
∂Ui

∂xj

+
∂Uj

∂xi

)]
, (1)

in which Ui is the ith component of velocity; t is the time; xj are the Cartesian
coordinates; ρ is the fluid density; p is the dynamic pressure; µ is the viscosity; and
µT is the eddy viscosity, calculated by a two-equation eddy-viscosity type turbulence
model, as detailed in the following section. EllipSys3D has been developed at the
Risø National Laboratory, Denmark and at the Technical University of Denmark,
Department of Fluid Mechanics. (One of the authors of the present paper (J. M.) has
been involved in the development of this flow code.) A variety of turbulence models
are available. The model is under constant development. The basic principles of the
model have been described in Michelsen (1992) and Sørensen (1995). The following
web address can be consulted for further information: http://www.risoe.dk/vea-
aed/numwind/flowsolver.htm.

In the present study, two kinds of hydrodynamic calculation have been performed:
(i) steady-state-flow calculations; and (ii) unsteady-flow calculations.

In the steady-state-flow calculations, the SIMPLE algorithm (Patankar 1980) is
used. In this algorithm, the pressure field is calculated and the velocity field is
corrected so that the continuity equation,

∂ρ

∂t
+

∂(ρUj )

∂xj

= 0, (2)

is satisfied in an iterative manner. By under-relaxation of the correction to the velocity
field, the unsteady components of the flow are suppressed.
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Although the majority of the present study involved steady-state flow calculations,
some unsteady-flow calculations have also been performed. In the unsteady-flow
calculations, the PISO algorithm (Issa 1986), an algorithm similar to SIMPLE, is
used. In this algorithm, no under-relaxation is applied, and the unsteady components
of the flow are maintained.

The HYBRID scheme of Spalding (1972) is used for calculations of the convective
terms in the momentum equations (equation (1)). It may be noted that HYBRID
has the form of a first-order upwind difference scheme in regions where the flow is
dominated by the convective term in (1). In regions where the diffusion is dominating,
i.e. at separation points, the HYBRID scheme has the form of a second-order central
difference scheme. HYBRID has proved to be very stable, a feature that is important
for scour calculations.

Finally, it may be noted that EllipSys3D has some distinct features. Most
prominently, EllipSys3D relies on multigrid solution techniques for the elliptic
equations. This makes the solver very fast. Another property is that the code structure
is ‘open and transparent’, alleviating inclusion of even complex auxiliary models, such
as, for instance, the morphology model as in the present application. A third property
is that the so-called Rhie–Chow momentum interpolation used in EllipSys has been
corrected to make it consistent for unsteady-flow computations (as reported in Shen,
Michelsen & Sørensen 2001). Other than these features, most of EllipSys3D (including
the previously mentioned algorithms) relies on techniques that have been proved in
previous work. The numerical code has been used in various engineering problems
(particularly in wind engineering); the following publications can be cited: Shen et al.
(2001, 2003, 2004), Sørensen, Michelsen & Schreck (2002) and Johansen et al. (2002).

2.2. Turbulence model

The k–ω model (Wilcox 1993) has been selected as the turbulence model because
of its better performance (Menter 1993; Wilcox 1993) in the case of boundary-layer
flows with a strong adverse pressure gradient, as will be detailed in the following
paragraphs.

There are three versions of the k–ω model in the literature: (i) the original k–ω

model, which is due to Wilcox; (ii) the k–ω, BSL (baseline) model; and (iii) the
k–ω, SST (shear-stress transport) model. The latter two models were developed by
Menter (1993) to improve Wilcox’s original model so that an even higher sensitivity
could be obtained for adverse-pressure-gradient flows.

Menter (1993) made an extensive comparison between (i) the classic k–ε model; (ii)
the original k–ω model; (iii) the k–ω, BSL model; and (iv) the k–ω, SST model for
various well-documented flows. The tested flows were, among others, two kinds of
adverse-pressure-gradient flow (one having a very strong adverse pressure gradient,
so strong that separation occurs); the backward-facing-step flow; and the flow past a
NACA 4412 airfoil at an angle of attack near maximum lift condition. The latter two
flows also have substantial adverse-pressure-gradient effects. The main conclusion
from this inter-comparison exercise was that the k–ω, SST model gave the most
accurate results while the k–ε model did not yield results as accurate as the other
three for the tested adverse-pressure-gradient flow cases. For this reason, the k–ω,
SST model has been chosen for the present application in which there is a strong
adverse pressure effect (see the pressure distribution in figure 18(b), which will be
discussed later), the effect responsible for the formation of the horseshoe vortex in
front of the pile. The quantity k in the k–ω model is the turbulent kinetic energy
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and ω the specific dissipation of turbulent kinetic energy, as will be detailed in the
following paragraphs.

Now, the k–ω model is essentially based on two equations, one equation for k, and
the other equation for ω:

∂ρk

∂t
+

∂ρUjk

∂xj

− ∂

∂xj

[
(µ + σkµT )

∂k

∂xj

]
= τij

∂Ui

∂xj

− β∗ρkω, (3)

∂ρω

∂t
+

∂ρUjω

∂xj

− ∂

∂xj

[
(µ + σωµT )

∂ω

∂xj

]

=
γ

νT

τij

∂Ui

∂xj

− βρω2+ 2ρ (1 − F1)
σω2

ω

∂k

∂xj

∂ω

∂xj

, (4)

in which k is

k = 1
2
u′

iu
′
i , (5)

and ω is

ω =
ε

kβ∗ , (6)

in which ε is the dissipation of turbulent kinetic energy

ε = ν
∂u′

i

∂xk

∂u′
i

∂xk

. (7)

In the preceding equations, τij are the Reynolds stresses,

τij = µT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− 2

3
ρkδij , (8)

u′
i is the fluctuating components of the velocity, δij is the Kronecker delta (δij = 1 for

i = j and δij = 0 for i �= j ), νT is kinematic eddy viscosity, νT = µT /ρ, and β∗ is one
of the model closure constants.

σk in (3) and σω, γ and β in (4) are given as

σk = F1σk1 + (1 − F1)σk2, (9)

σω = F1σω1 + (1 − F1)σω2, (10)

γ = F1γ1 + (1 − F1)γ2, (11)

β = F1β1 + (1 − F1)β2, (12)

in which σk1, σk2, σω1, σω2, γ1, γ2, β1 and β2, the model constants, are combined as a
function of the distance z to the nearest wall with a so-called blending function, F1.

The model constants for inner (wall) region are:

β1 β∗ γ1(= (β1/β
∗) − (σω1κ

2/
√

β∗)) σk1 σω1

0.0750 0.09 0.567 0.85 0.5

and for the outer region:

β2 β∗ γ2(= (β2/β
∗) − (σω2κ

2/
√

β∗)) σk2 σω2

0.0828 0.09 0.463 1.0 0.856
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in which κ( = 0.4) is the von Kármán constant.
The function F1, on the other hand, is

F1 = tanh
(
arg4

1

)
(13)

and

arg1 = min

[
max

( √
k

0.09ωz
;
500ν

z2ω

)
;

4ρkσω2

(CDkω)z2

]
(14)

with

(CDkω) = max

(
2ρ

σω2

ω

∂k

∂xj

∂ω

∂xj

; 10−20

)
(15)

In the k–ω, SST model, the eddy viscosity is calculated from

µT = ρ
0.3k

max(0.3ω; ΩF2)
(16)

where Ω is the absolute value of the vorticity. The function F2 in (16) is another
blending function, defined by

F2 = tanh
(
arg2

2

)
, (17)

in which

arg2 = max

(
2

√
k

0.09ωz
;
500ν

z2ω

)
. (18)

Both F1 and F2 take the value unity at the wall and gradually decrease and approach
zero as the distance from the wall is increased.

2.3. Boundary conditions

The boundaries of the computational domain (figure 2) are inlet, outlet, symmetry
boundaries and walls.
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2.3.1. Inlet and outlet boundary conditions

(i) At the inlet, zero transverse, v, and vertical, w, velocities were specified. The
inlet profiles for u, k and ω were based on the equilibrium profiles obtained from
uniform-channel flow calculations with similar flow settings.

(ii) At the outlet, zero-gradient conditions (∂/∂n= 0), Neumann conditions, were
applied for all quantities.

2.3.2. Symmetry boundaries

At the symmetry boundaries (i.e. at the sides and top surface of the computational
domain, figure 2), Neumann conditions were applied for k and ω and for the three
components of the velocity (u, v and w). As seen, the model does not have a free-
surface facility; there is a ‘lid’ at the top surface. The implication of the latter is that
the model cannot handle the situations where there is a significant amount of change
in the free surface near the structure. This aspect of the flow is mainly controlled by
the Froude number, Fr; the larger the value of Fr, the more pronounced the variation
in the free-surface elevation. The is discussed in detail in § 5.1.

2.3.3. Walls (the bed and the pile surface)

(i) Zero velocity was specified for u , v and w.

(ii) Zero turbulent energy was specified for k when the wall was smooth, while
the Neumann condition was applied when the wall was rough and transitional.
Regarding the latter condition, experiments reveal that the Neumann condition is
satisfied (∂k/∂n= 0) at the wall for rough boundaries, n being the direction normal
to the wall (Nezu 1977; Sumer, Cokgor & Fredsøe 2001; Sumer et al. 2003). A
validation exercise for the undisturbed-flow case revealed a much better agreement
with the experiments (Nezu 1977; Sumer et al. 2001) when the boundary condition
was taken in the form of the Neumann condition (Roulund 2000, p. 25).

(iii) The Dirichlet condition was applied for ω, namely,

ω = Sr

U 2
f

ν
at the wall, (19)

where Uf =
√

τo/ρ is the friction velocity based on the wall shear stress τo. The
quantity Sr is a tuning parameter, and it is used to account for the bed roughness:

Sr =




(
40

k+
s

)3

(k+
s < 20.2)

100

(k+
s )0.85

(k+
s > 20.2)

(20)

where k+
s = (ksUf )/ν is the wall roughness in wall units, and ks is Nikuradse’s

equivalent sand roughness. Wilcox (1993) was the first to introduce the boundary
condition in (19). The tuning parameter Sr was given by Wilcox (1993) as in (20), but
with constants slightly different from those in (20) owing to the special implementa-
tion of the velocity boundary conditions. With the present constants (equation (20)),
the friction velocity determined for a wide range of velocities for the case of the un-
disturbed flow was found to agree well with that obtained from the classic Colebrook
and White equation (the diffference being less than 6 %, depending on the wall
roughness, Roulund 2000, p. 23).

(iv) For the implementation of the preceding boundary condition, the wall shear
stress, τ0(= ρU 2

f ), is required. In the present application, τ0 was not calculated from



Flow and scour around a circular pile 359

Calculation type Rigid bed Live-bed scour

Block dimension, N 3 323 163

Total number of cells 786 × 103 197 × 103

Number of cells across water depth 64 32
Number of cells around pile perimeter 128 64
Length of calculation domain 20D 15D
Width of calculation domain 20D 18D
Depth of calculation domain 2D 2D

Table 1. Characteristics of mesh in the numerical calculations.

τ0 = (µ + µT )(∂Ui/∂xj + ∂Uj/∂xi)Wall as is traditionally done, but rather from the van
Driest (1956) velocity profile

u

Uf

= 2

∫ y+

0

dy+

1 +
√

1 + 4κ2 (y+ + y+)2 [1 − exp(−(y+ + y+)/A)]2
. (21)

This improved the stability of the model and allowed a coarser mesh resolution at
the bed. Here, A(= 25) is the van Driest damping factor, y+(= yUf /ν) is the distance
from the wall in wall units, measured from the top of the roughness elements and
y+ is the coordinate shift (Rotta 1962; Cebeci & Chang 1978) given by

y+ = 0.9

[√
k+

s − k+
s exp

(
−k+

s

6

)]
(5 < k+

s < 2000), (22)

in which k+
s is the roughness Reynolds number, k+

s = ksUf /ν. In the implementation
of (21), u is taken as the tangential velocity in the cell adjacent to the wall.

Similar implementation of the bed shear stress in the wall boundary conditions is
reported in Sørensen (1995) for the k–ε model.

As a final remark in conjunction with § § 2.2 and 2.3, it may be emphasized that
the turbulence model incorporated in the present code is a well-tested model and has
been used successfully in various contexts in computational fluid dynamics (Menter
1993; Wilcox 1993). The only changes made in the present implementation are the
values of the constants in (20) which are slightly different from those originally given
by Wilcox (1993) (item (iii) above), and the way in which the wall shear stress is
calculated through the van Driest equation (item (iv) above).

2.4. Computational mesh

The momentum, continuity and turbulence-model equations are transformed into
curvilinear coordinates, linearized and decoupled.

The computational mesh is based on a multi-block structure with each block con-
taining N 3 computational cells where N is the number of cells in each spatial direction.

Two different types of calculation have been performed: (i) rigid-bed calculations;
(ii) live-bed scour calculations;

Table 1 summarizes the mesh characteristics for the different types of calculation.
It may be noted that N =32 required prohibitively large computational times for the
scour and unsteady-flow simulations.

Figure 3(a) shows a detailed picture of the mesh used for the rigid-bed calculations.
During the live-bed scour calculations, the mesh is continuously updated to adjust
the changes of the bed topography. Figure 3(b) illustrates an example of the mesh
during the scour calculations.
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Figure 3. (a) Detail of mesh for rigid bed calculation. (b) Example of mesh
for scour calculation.

3. Morphologic model
The morphologic model couples the flow solution with a sediment transport

description, and routines for updating the computational mesh based on the mass
balance of sediment.

There are three elements in the morphologic model: (i) the bedload; (ii) the sand
slides, and (iii) the equation of continuity (mass balance) for sediment.

3.1. Bedload

A two-dimensional bedload description has been developed. This description is an
extension of the bedload equation of Engelund & Fredsøe (1976) to a two-dimensional
vectorial representation.

The bedload occurs on a slope (figure 4). Ub is the mean transport velocity of a
particle moving as bedload. The fluid velocity at the particle position is U , different
from Ub (figure 4). Following Engelund & Fredsøe (1976), the latter velocity may be
taken as U = aUf in which Uf is the friction velocity, and a is an empirical constant,
taken as a = 10. (It may be noted that the constant a in Engelund & Fredsøe’s
study was determined by comparing the velocity of bedload particles expressed by
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Figure 4. Force balance on a single moving particle on a sloping bed.

Ub/Uf = a(1 − 0.7
√

θc/θ ) with the experimental data from studies of Luque (1974)
and Meland & Norman (1966) (see figure 1 in Engelund & Fredsøe 1976). Here, θ is
the Shields parameter and θc the critical value of the Shields parameter corresponding
to initiation of motion at the bed, see (26) below).

The rate of bedload transport in volume per unit time and per unit width, qb, is
related to Ub by the following equation (Engelund & Fredsøe 1976)

qb = 1
6
πd3 pEF

d2
Ub (23)

in which d is the grain size, and pEF is the percentage of particles in motion in the
surface layer of the bed. As seen from the above equation, the bedload transport
is determined by two quantities: pEF and Ub. Each quantity is now considered
individually.

3.1.1. Percentage of particles in motion in the surface layer of the bed

Engelund & Fredsøe (1976) give the following semi-empirical expression for pEF ,

pEF =


1 +

(
1
6
πµd

θ − θc

)4



−1/4

, (24)

in which µd is the dynamic friction coefficient, taken as 0.51 (Fredsøe & Deigaard
1992, p. 218), θ is the Shields parameter associated with the skin friction and θc is the
critical value of θ for the initiation of motion at the bed. The same expression has
been used for the present calculations with the critical Shields parameter calculated
by

θc = θc0

(
cos β

√
1 − sin2 α tan2 β

µ2
s

− cos α sin β

µs

)
, (25)
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in which θc0 is the critical Shields parameter for a horizontal bed, taken as 0.05, µs

is the static friction coefficient, taken as µs =0.63 for the sand used in the present
simulation (Lambe & Whitman 1969, p. 149), and α is the angle between the flow
velocity vector U and the direction of the steepest bed slope ξ (figure 4). It may
be noted that changing θc with that given in (25) ensures that the ‘slope effect’ is
accounted for. The Shields parameter in (24) is defined by

θ =
U 2

f

(s − 1)gd
, (26)

in which s = ρs/ρ is the specific gravity of the sediment grains, and g is the acceleration
due to gravity. Uf in (26) is taken as the magnitude of the friction-velocity vector Uf

associated with the skin friction.
(Dey 2003, derived an equation for the critical bed shear stress in the general case

where the bed surface has a slope in two directions (i.e. longitudinal and transverse
directions). In his derivation, Dey also considered a lift force on the particle. Dey’s
equation reduces to that given in (25) when the slope in the longitudinal direction is
set equal to zero, and the lift force, FL, is omitted. The latter is justified because the
lift is small compared with the submerged weight of the particle, W, at the threshold
of the motion, namely FL/(W cos β) = O(0.1). The latter can be readily verified, using
the lift force data existing in the literature, e.g. Einstein & El Samni 1949, and Sumer
1984).

3.1.2. Mean transport velocity of particle

First, we consider the forces on a bedload particle (figure 4). There are two kinds
of force: The agitating forces and the stabilizing forces. The former forces are the
agitating force due to gravity and that due to flow.

(i) The agitating force due to gravity in the direction of the steepest bed slope is

W sin β, (27)

in which

W = 1
6
πρg(s − 1)d3. (28)

(ii) The agitating forces due to flow are the drag force and the lift force. Following
Engelund & Fredsøe (1976, p. 297), this force may be written in the form of a drag
force

FD = 1
2
ρc

π

4
d2U 2

r , (29)

in which c is the force coefficient, and Ur is the velocity of the flow (at the particle
position) relative to the particle:

U r = U − Ub = aUf − Ub. (30)

The stabilizing force, on the other hand, is

(W cos β)µd, (31)

which is in the direction opposite to the particle motion. Here, µd is the dynamic
friction coefficient.

It can readily be shown that the force coefficient c in (29) is actually c =CD +µdCL,
the coefficients CD and CL being the drag and the lift coefficients. c can be found
from the force balance for a bedload particle at the critical velocity on a horizontal
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bed:

c =
4µs

3a2θc0

. (32)

However, Luque (1974) found from his experiments (see also Engelund & Fredsøe
1976, p. 298, and Fredsøe & Deigaard 1992; p. 211):

c =
4µs

3a2
(

1
2
θc0

) . (33)

The latter equation has been used in the present calculations.
Next, we consider the two components of the equation of the particle motion

(figure 4).
The equation of motion in the direction of the particle motion, considering that

the particle is, on average, moving with a constant velocity:

FD cos Ψ1 + W sin β cos(α − Ψ ) − (W cosβ)µd = 0. (34)

The equation of motion in the direction perpendicular to Ub, on the other hand,
reads:

FD sin Ψ1 − W sin β sin(α − Ψ ) = 0 (35)

There are also the following geometric relations from figure 4

Ur sin Ψ1 − aUf sin Ψ = 0, (36)

and

Ur cos Ψ1 − aUf cos Ψ + Ub = 0. (37)

Equations (34)–(37) are to be solved for the four unknowns, namely Ub, Ur , Ψ and
Ψ1. Once Ub and Ψ are determined (and therefore Ub is obtained), then inserting
Ub and pEF (from (24) and (25)) in (23) will give the bedload transport qb. These
equations have been solved in their full forms with the Newton–Raphson technique.

3.2. Sand slide

Observations show that, during the development of scour holes, there are areas at
the upstream face of the scour hole where the local bed slope exceeds the angle of
repose, and, as a result, shear failures occur at these locations. Two ‘ingredients’ of
this latter process are that, first of all, the backward flow at the base of the pile erodes
the foot of the upstream slope of the scour hole (A in figure 5), and secondly, there is
a continuous sediment supply into the scour hole from upstream (B in figure 5). The
video frame, for example, at t = 5 min (figure 30c) reveals these processes.

Our visual observations have indicated that, in the main upstream part of the scour
hole, the bed collapses when the bed slope β exceeds approximately the angle of
repose, βr � 32◦, by a few degrees. They have also showed that the shear failure in
the soil occurs just below the bed surface, and sand slides down towards the centre
of the scour hole. After each sand slide, the bed slope is a few degrees lower than the
angle of repose. It may be noted that the ‘oversteepening’ of slope before sand slide
is known to occur in geological/sedimentological/bedform processes (see, e.g. Allen
1985, pp. 68–69).

Based on these observations, a ‘sand slide’ procedure was developed to calculate
the new slope of the bed:

(i) Calculate a new sediment transport rate when the local bed slope exceeds
βr + 2◦.
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B

A

Figure 5. Two major effects, A and B, to cause sand slide. A, erosion of the foot of the
upstream slope; B, continuous supply of sediment.

(ii) Do this, based on a new particle velocity Ub, obtained from the following
equation:

W sin β − µdW cos β − 1
2
ρCD

π

4
d2U 2

b = 0. (38)

(This is basically the equation of motion for a sediment particle (undergoing the
sand slide) in the direction of the particle motion, considering that the particle is, on
average, moving with a constant velocity in a still water).

(iii) Update the bed with the morphology scheme (described in the following
section) used for the ordinary bedload.

(iv) Repeat this procedure until the local bed slope is reduced to βr − 2◦.
In this procedure, a pseudo time step was used since it was assumed that the

sand slide takes place instantaneously. It may be noted that the work of Olsen &
Kjellesvig (1998) also takes account of the sand slide in the development of the scour
hole.

3.3. Morphologic scheme

The mass balance for sediment at each grid point on the bed is

∂h

∂t
=

−1

1 − n

1

A

4∑
i=1

[(qb,i · ni)|li |], (39)

in which h is the bed elevation, n is the porosity (taken as n= 0.4 in the present calcula-
tions), A is the projected area (on the (x, y)-plane) of a small bed-surface element, i

indicates the number assigned to each side of the projected area (i =1, . . . , 4), ni is
the normal vector at the ith side of the projected area, qb,i is the sediment-transport
vector at the ith side of the projected area and |li | is the length of the ith side of the
bed element.

The procedure in the computations was as follows: (i) generate the mesh; (ii)
calculate the flow; (iii) calculate the sediment transport due to bed load; (iv) update
the bed; (v) check the sand slide; and (vi) return to Step 1. The morphologic time step
in the calculations was 0.02 s initially, and gradually raised to 0.1 s. The computational
time for a single test (where the scour starts with an initially plane bed and continues
until the scour process attains its equilibrium state) was 2.5 months on an Alpha
21264 workstation, equivalent to a 1500 MHz Pentium IV.
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Finally, it may be noted that, in the present model, the sediment transport is taken
as bedload (no suspended-load sediment transport is considered). To our knowledge,
no study is yet available, investigating the effect of the suspended load on scour.
However, the data reported in Baker (1986) (where the scour regimes are covered
in a systematic manner from the clear-water scour to the live-bed scour (i) with
bed-load, (ii) with bed-load and suspended load, and (iii) with suspended-load sheet-
flow) suggests that this effect is not radically significant in terms of the equilibrium
scour depth (see Melville & Sutherland 2000, p. 493; Sumer & Fredsøe 2002, p. 179).
However, the suspension process can increase the time rate of scour in the initial
stages (see § 6.2).

4. Experiments
4.1. Rigid-bed experiments

The rigid-bed experiments were conducted with a vertical circular pile in a steady
current. The purpose of these experiments was to obtain data to validate the hydro-
dynamic model.

The pile diameter was D = 53.6 cm. The surface of the pile was hydraulically smooth.
The pile base was sealed along its perimeter at the bottom.

Two kinds of experiments were made: (i) the smooth-bed experiments (Test 1); and
(ii) the rough-bed experiments (Test 2) where the bottom of the flume was covered
with a single layer of crushed stones; the roughness height of the stones was k =7mm.
The former experiments were conducted in a flume, 35 m long and 3 m wide, while the
latter experiments were conducted in another flume, 28 m long and 4 m wide. In both
experiments, the water depth was maintained at 54 cm and the approach velocity at
V = 32.6 cm s−1. The velocity V was obtained from integration of the velocity profile.
Regarding the blockage effect, the potential flow theory (see e.g. Sumer & Fredsøe
1997, p. 126) gives an increase in the flow velocity of only 3 % at the sidewalls in the
case of the 3 m wide flume and less than 2 % in the case of the 4 m wide flume, and
therefore the blockage effect did not pose any significant problem.

Two kinds of measurements were made: (i) velocity measurements; and (ii) bed
shear stress measurements.

The velocity measurements were made in the plane of symmetry upstream and
downstream of the pile. A two-component DANTEC ‘pen-size’ laser-Doppler anemo-
meter (LDA) was used in the measurements. The LDA system comprised a two-
colour high-performance fibre optic system with a DANTEC 60 × 17 14 mm fibre
optic probe head and a 300 mW argon-ion laser, used in backscatter mode with two
DANTEC 55N11 frequency shifters and two 57N10 Burst Spectrum Analyzers (BSA)
in the smooth-bed experiments. The 300 mW laser was replaced with a 6 W argon
laser in the rough-bed experiments where two DANTEC 55N21 frequency trackers
were used instead of the BSAs, as these instruments were available at the time of
these experiments. The focal length of the pen-size probe (with a specially built
adapter) was 8 cm. The dimensions of the measurement volume (dx × dy × dz) were
1.5 mm × 0.12 mm × 0.12 mm.

The bed shear stress was measured with a DANTEC one-component 55R46 hot-film
probe. These measurements were conducted only with the smooth bed. (The working
principle of the hot-film technique breaks down for rough walls, and therefore this
technique cannot be applied to such cases, Hanratty & Campbell 1983). The probe
was mounted flush to the bed. It was calibrated in position, using a small three-sided
calibration channel of 1 mm in depth and 30 mm in width, placed over the probe.
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Figure 6. Undisturbed velocity profile at the measurement section for the rigid bed
experiments. (a) Test 1, smooth bed, Uf = 1.3 cm s−1. (b) Test 2, rough bed, Uf = 2.3 cm s−1,
ks =1.0 cm. z is measured from theoretical bed.

Further information about the probe and the calibration procedure can be found in
Sumer et al. (1993).

In both the smooth-bed case and the rough-bed case, the pile was placed 20 m
downstream of the inlet section.

Figures 6(a) and 6(b) show the measured, undisturbed mean velocity profiles at the
measurement sections in the two experiments, respectively. In the figure, Uf is the
friction velocity,

Uf =

√
τ∞

ρ
, (40)

and z+ is the normalized distance from the bed,

z+ =
zUf

ν
, (41)

Here, τ∞ is the undisturbed bed shear stress, ρ the fluid density and ν the kinematic
viscosity.

Table 2 summarizes the test conditions in the rigid-bed experiments. In the table,
Reδ,V is the boundary-layer thickness Reynolds number,

Reδ,V =
V δ

ν
, (42)

ReD,V the pile Reynolds number,

ReD,V =
V D

ν
, (43)

Note that the Reynolds numbers are based on the mean flow velocity V . Also, in the
table, Fr is the Froude number defined by

Fr =
V√
gh

, (44)
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Test (1) 1 2

Bed (2) Rigid Rigid
Smooth bed/rough bed (3) Smooth Rough
Water depth h (cm) (4) 54 54
Boundary layer thickness δ (cm) (5) 54 54
Mean flow velocity V (cm s−1) (6) 32.6 32.6
Pile diameter D (cm) (7) 53.6 53.6
Reδ,V = V δ/ν (8) 1.8 × 105 1.8 × 105

ReD,V = V D/ν (9) 1.7 × 105 1.7 × 105

Fr = V/(gh)1/2 (10) 0.14 0.14
Bed roughness height k (cm) (11) – 0.7
Friction velocity Uf (cm s−1)

From Log. Fit (12) 1.3 2.3
From Hot-film Meas. (13) 1.5 –

Bed Nikuradse equivalent sand Roughness ks (cm) (14) – 1.0
k+

s = ksUf /ν (15) – 230

Table 2. Test conditions for the rigid-bed experiments.

225 cm 275 cm 385 cm

660 cm

990 cm

180 cm 150 cm

13 cm

13 cm

180 cm

180 cm

Inlet

Concrete
bed

Concrete
bed

Flow straighteners

Sand pit
d50 = 0.26 mm

Pile, D = 10 cm

Figure 7. Test set-up for the scour experiment.

in which h is the flow depth. Moreover, in table 2, k+
s is the roughness Reynolds

number corresponding to Nikuradse’s equivalent sand roughness of the bed:

k+
s =

ksUf

ν
, (45)

4.2. Scour experiment

The purpose of the scour experiment was, first of all, to obtain a detailed description of
the scour process so that the present morphologic model could be set up accordingly,
and secondly, to obtain data, which together with the existing data, help to verify
the model. The scour experiment (Test 3) was conducted in a current flume with
a sand pit (figure 7). The water depth was 40 cm, and the undisturbed mean flow
velocity V = 46 cm s−1. The model pile, a 10 cm diameter circular cylinder with a
hydraulically smooth surface, was placed in the sediment bed extending down to the
bottom of the sand pit. The pile Reynolds number was ReD,V = 4.6 × 104. The sand
size was d50 = 0.26 mm with a geometric standard deviation (the sediment gradation)
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Figure 8. (a) Flow and scour visualization set-up for Test 3. (b) Radial planes videotaped
in the flow/scour experiment.

of σg = d85/d50 (or
√

d84/d16, see Raudkivi 1998, p. 10) = 1.5 in which d85, d50 and d15

correspond to the grain size of which, respectively, 85 %, 50 % and 15 % are finer.
The ratio between the approach velocity and the critical velocity for the initiation
of sediment motion was V/Vcr = 1.25 in which Vcr =37.5 cm s−1, corresponding to
θcr = 0.05, the critical value of the Shields parameter estimated from the Shields
diagram for the initiation of motion at the bed (see, e.g. Sumer & Fredsøe 2002,
p. 10 for the Shields diagram). The flow and scour processes around the pile were
visualized, using a DANTEC 2.5 mm thick vertical sheet of laser light as a light source
(figure 8a). The flow was made visible with fluorescent dye as well as with sediment
grains. A miniature underwater video camera (figure 8a) was used to videotape
the flow/scour processes. This exercise was repeated at five radial (vertical) sections
sketched in figure 8(b) to obtain a complete picture of these processes around the pile.

The scour was in the live-bed regime. This was revealed by the presence of bed
ripples outside the scour hole, as will be seen later (figure 32). The ripples were of a
three-dimensional nature, 3–4 cm high and 10–15 cm long.

Apart from the flow-visualization experiments described above, the time develop-
ment of scour depth at both the upstream side and the downstream side of the pile
was monitored. No sediment feeding at the inlet of the sand pit was implemented in
the experiments. This was because the bed lowering reached the test section about 4 h
after the test started, a time period significantly larger than the time scale of scour
(i.e. ∼2 h at the upstream side and ∼3 h at the downstream side of the pile, as will be
detailed later).

Velocities in the scour experiment (in the undisturbed case) were measured with a
micro propeller. Figure 9 displays the undisturbed mean velocity profile at the test
section (figure 7). The distance from the bed, z, in the figure is measured from the mean
bed level. Given the uncertainty imposed by the ripple-covered live bed, no refinement
with regard to the precise location of the theoretical bed was sought. Figure 9 indicates
that the velocity profile can be approximated by the logarithmic law,

u

Uf

= 2.5 ln

(
30

z

ks

)
(46)

within the lower half of the flow depth. The figure also indicates that the boundary-
layer thickness can be taken as δ = 20 cm. Note that, owing to the relatively short
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Figure 9. Undisturbed mean velocity profile in Test 3. z is measured
from the mean level of ripples.

Test (1) 3

Bed (2) Loose sand
Water depth h (cm) (3) 40
Boundary-layer thickness δ (cm) (4) 20
Mean flow velocity V (cm s−1) (5) 46
Pile diameter D (cm) (6) 10
Reδ,V = V δ/ν (7) 9.2 × 104

ReD,V = V D/ν (8) 4.6 × 104

Fr = V/(gh)1/2 (9) 0.23
Grain size d50 (mm) (10) 0.26
Gradation σg (11) 1.5
Friction velocity Uf (cm s−1) (12) 4.8
Friction velocity due to skin friction U ′

f (cm s−1) (13) 2.8
Shields Parameter θ (14) 0.55
Shields parameter corresponding to U ′

f θ ′ (15) 0.19
Nikuradse equivalent sand roughness ks (cm) (16) 15
k′

s = 2.5 d50 (mm) (17) 0.55
k′+

s = k′
sU

′
f /ν (18) 17

Table 3. Test conditions for the scour experiment.

distance from the inlet (660 cm, see figure 7), the boundary layer was not developed
across the entire depth at the test section. The quantity ks in (46) is Nikuradse’s equi-
valent sand roughness corresponding to the ripple-covered bed, and the logarithmic
fit gives ks = 15 cm. The friction velocity from the logarithmic fit (equation (46)), on
the other hand, is found to be Uf = 4.8 cm s−1 while the skin friction part of the latter
friction velocity is estimated to be U ′

f = 2.8 cm s−1, using Engelund’s (1966) relation.
The experimental conditions in the scour test (Test 3) are summarized in table 3.
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Figure 10. Velocity field in the plane of symmetry. Smooth rigid bed (Test 1).

5. Rigid-bed flow simulations
5.1. Validation of the model

The model has been validated against (i) the present experiments and (ii) the experi-
ments of others. Three kinds of quantities are compared with their counterparts in
the experiments: (i) the velocity; (ii) the pressure; and (iii) the bed shear stress.

Figure 10 shows the measured velocity field in the plane of symmetry from Test 1,
the smooth bed case (table 2), of the present experiments, compared with that obtained
from the steady-state solution of the numerical model. Figures 11 and 12, on the other
hand, show the measured and calculated horizontal, u, and vertical, w, velocities for
various values of the distance, z, from the bed for the same test (Test 1).

Figures 13–15 compare the corresponding results for the rough-bed case (Test 2,
table 2).

Figures 11–12 and 14–15 show that, at the upstream side of the pile, there is good
agreement between the numerical simulations and the measurements, although the
velocities for small values of z very near the pile seem to be somewhat underpredicted
in the numerical simulations. Furthermore, the comparisons in figures 10 and 13
indicate that the horseshoe vortex (figure 1) is predicted well by the numerical model.
It may be noted that the curvature in the circulation pattern in the experimental
results (figure 10a) is stronger on the upstream side than in the model in the range
−0.7 � x/D � −0.5 below z/D = 0.2. This is due to the underpredicted vertical
velocities in the model (figure 12, z = 0.5; 1.0; and 2.0 cm).

As for the downstream side of the pile (in the plane of symmetry), figure 10(a)
indicates that a mean anticlockwise circulation is present in the experiments in Test 1,
the smooth-bed case. By introducing the rough-bed conditions (Test 2), however, the
mean circulation behind the pile changes its direction; namely, a clockwise circulation
forms behind the pile, as revealed by figure 13(a).

Now, the numerical model was not able to capture the aforementioned anticlockwise
circulation observed in the smooth-bed experiment (see the lee side of the pile in
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Figure 11. Horizontal velocity, u (m s−1), in the plane of symmetry at different distances
from the bed. Smooth rigid bed (Test 1).

figure 10(b), and also see the w velocities at the lee side of the pile at distances
z = 2 − 20 cm in figure 12) while it did capture the clockwise circulation in the
rough-bed experiment (cf. figure 13). No clear explanation has been found for this
behaviour.

Figure 16 compares the bed shear stress along the x-axis calculated from the model
with that measured in the experiments in Test 1 (table 2). The negative bed shear stress
corresponds to the location of the horseshoe vortex in front of the pile (figure 1). The
figure shows that the numerical and experimental results agree very well outside the
horseshoe vortex. The agreement of the model with the trend in the data is also good
inside the horseshoe vortex for x/D < −0.75. However, for −0.75 < x/D < −0.5, the
bed shear stress is apparently underpredicted by the numerical model, the maximum
difference between the model and the experiment being more than 30 %. The latter
is consistent with the picture obtained in conjunction with the velocity measurements
at the upstream side of the pile at z = 0.5 − 2 cm presented in figure 11. No clear
explanation has been found for the observed discrepancy between the numerical
model and the experiments.
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Figure 12. Vertical velocity, w (m s−1), in the plane of symmetry at different distances
from the bed. Smooth rigid bed (Test 1).

Figure 17 compares the amplification of the bed shear stress obtained from the
present model and that from Hjorth’s (1975) smooth-bed experiments. Here the
amplification of the bed shear stress is defined by

ατ =
|τ0|
τ∞

, (47)

in which τ0 is the bed shear stress and τ∞ is the undisturbed bed shear stress. The bed
is smooth. h = δ = 20 cm, V = 30 cm s−1, D =5 cm, Reδ,V = 6 × 104, ReD,V =1.5 × 104

and δ/D =4. The agreement between the present calculations and the measurements
is reasonable; the maximum value of the bed shear stress and also the location of the
maximum bed shear stress are captured well.

Graf & Yulistiyanto (1998) also measured the bed shear stress. The latter was
obtained from the Reynolds stress profiles. They report that the Reynolds stress
measurements near the bed are doubtful because of the limitations of their measuring
technique. Nevertheless, they argue that the only apparent conclusive evidence from
their measurements is that the bed shear stress reaches its largest values in the plane
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Figure 13. Velocity field in the plane of symmetry. Rough rigid bed (Test 2).

at 45◦ (this is for both tests they carried out). This result is in good agreement with
the present numerical result in figure 17(a).

Figures 18(a) and 18(b) compare the present simulation results with the pressure
measurements of Dargahi (1989). The bed is smooth. The test conditions are:
h = δ = 20 cm, V = 26 cm s−1, U (the free-stream velocity) = 30 cm s−1, D = 15 cm,
Reδ,V =5.2 × 104 and ReD,V = 3.9 × 104. Figure 18(a) depicts the stagnation pressure
across the depth at the upstream edge of the pile, while figure 18(b) depicts the
pressure at the bed along the upstream line of symmetry. The quantity plotted, Cp,

is the pressure coefficient. The agreement between the model simulation and the
measurement is good. It may be noted that Dargahi (1989) relates the narrow plateau
in the pressure at the bed (in the interval −0.9 < x/D < −0.7, figure 18b) to the
presence of the horseshoe vortex. Although shifted to slightly higher |x/D| values,
this plateau is also captured in the present numerical simulation.

One of the referees called for a comparison between the present numerical model
and Graf & Yulistiyanto’s (1998) experiments where the velocity was measured
in radial planes at various angles. This exercise was carried out and the results
are plotted in figure 19. The test conditions were as follows: the water depth was
h = 18.5 cm, the mean flow velocity V =67 cm s−1, the pile diameter D = 22 cm, and
the bed was smooth. As seen from figure 19, although the model captures the main
features of the flow at Θ = 0◦ and Θ = 45◦ reasonably well, this is not the case for
the radial planes Θ = 90◦, Θ = 157.5◦ and Θ = 180◦. This discrepancy arises because
the numerical model has a ‘lid’ at the top surface of the computational domain (a
symmetry boundary, figure 2) rather than a free surface. In the experiment, however,
the free surface exhibits a substantial amount of variation in the vicinity of the
cylinder (figure 19 and see figure 20 for a schematic description). There is a runup in
front of the cylinder and a ‘depression’ around the side edge and at the back of the
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cylinder. The difference between the surface elevation in front and at the side edge of
the cylinder is as much as h= 5.2 cm (see panels Θ = 0◦ and Θ = 90◦ in figure 19b).
This difference and therefore the induced pressure gradient generates a strong down
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flow with a very strong component of flow velocity in the radial direction, as observed
in figure 19(b) at Θ = 90◦, Θ = 157.5◦ and Θ = 180◦. As the numerical model cannot
handle the free surface, the strong radial component of the flow observed in Graf &
Yulistiyanto’s experiment cannot be captured.

The previously described process is mainly controlled by the Froude number, Fr
(equation (44)). The larger the value of Fr, the more pronounced the effect. In Graf
& Yulistiyanto’s experiment, Fr = 0.5. To observe the Froude-number effect in the
laboratory, a supplementary experiment was carried out. Two tests were conducted
in this supplementary experiment: one with Fr =0.5 and the other with Fr =0.2,
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Figure 20. Schematic description of free-surface for high Froude numbers.

a relatively small Froude number to facilitate comparison between the high- and
low-Froude-number cases. The test conditions were as follows: the water depth
was h = 26.1 cm, the mean flow velocity V = 30.0 cm s−1 for the Fr = 0.2 test and
V =79.5 cm s−1 for the Fr =0.5 test, the pile diameter D =31 cm, the flume width was
2 m, and the bed was smooth. The horizontal component of the velocity was measured,
using a micro propeller which was aligned with the flow direction at the measuring
point. The direction of the flow at the measuring point was measured electronically,
using a thin (1 mm thick) wing of area 1 cm × 3 cm. The radial component of the
velocity was then calculated and plotted as a function of the vertical distance from the
bed at different radial angles. Figure 21 displays the results for only two radial angles
(Θ =157.5◦ and Θ =180◦) for reasons of space. The difference in the water level
between the front and side edges of the cylinder was h= 6.5 cm for the Fr =0.5 test
and only h= 1 cm for the Fr = 0.2 test. Comparison of the velocity profiles between
the two cases clearly shows that while the velocity profiles for Fr = 0.2 resemble the
velocity distributions of figure 19(a) (no Fr number effect), the velocity profiles for
Fr = 0.5 resemble the velocity profiles of figure 19(b), revealing the Froude-number
effect on the flow field in the vicinity of the cylinder.

It may be noted that the Froude number of the present rigid-bed tests (Fr = 0.14,

table 2), that of Hjorth’s test (1975) (Fr = 0.21) and that of Dargahi’s test (Fr =0.19)
are so small that the Froude-number effect was practically non-existent in these
studies, and therefore the present numerical results and the experiments are in
agreement.

The difference in the surface elevation between the front and side edges of the
cylinder h may, to a first approximation, be written as h/h = Fr2/2 for small
Froude numbers. Using this relation, it can be seen that h/h < O(0.02), a ‘head’
difference small enough not to cause any significant flow in the radial direction
(practically no Froude-number effect) when Fr < O(0.2). (For large Froude numbers,
the quantity h/h may be expected to be a function of not only the Froude number
but also h/D.) At this juncture, it may be noted that the Froude number in most
practical cases (except mountainous streams) is very small, certainly smaller than
O(0.2), and therefore the present numerical model (without the free surface ‘facility’)
can be used with no serious implications.
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planes. Experiments (a) Fr = 0.2 and (b) Fr = 0.5.

From the preceding paragraphs, we can conclude that the present model captures
well the mean properties of the flow around a circular pile, provided that the Froude
number is small enough, and therefore the present model can be used for studying
flow processes around the pile (such as the horseshoe vortex, the lee wake and the
amplification of the bed shear stress) in such situations. The remainder of § 5 will
focus on the latter.

5.2. Horseshoe vortex

The horseshoe vortex is caused by the rotation in the incoming flow; the boundary
layer on the bed upstream of the pile undergoes a three-dimensional separation
(along the dashed line, S, in figure 1) under the influence of the adverse pressure
gradient (figure 18b) induced by the presence of the pile. The separated boundary
layer subsequently rolls up to form a spiral vortex (the horseshoe vortex) around the
structure, which then trails off downstream (figure 1).

From dimensional grounds, the non-dimensional quantities describing the horseshoe
vortex in front of a circular pile with a smooth bed depend mainly on the following
parameters (Baker 1979),

δ

D
, ReD (or, alternatively, Reδ), (48)
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in which δ/D is the ratio of the bed-boundary-layer thickness to the pile diameter,
ReD is the pile Reynolds number,

ReD =
UD

ν
(49)

and Reδ is the bed-boundary-layer-thickness Reynolds number

Reδ =
Uδ

ν
(50)

in which U is the velocity at the outer edge of the bed boundary layer (the free-stream
velocity), figure 1. The latter definitions are slightly different from those in (42) and
(43).

If the bed is rough, obviously the bed roughness (normalized by the pile diameter,
ks/D, or alternatively by the boundary-layer thickness, ks/δ) should also influence the
horseshoe vortex.

5.2.1. Influence of the boundary-layer thickness

The separation of the bed boundary layer (to form the horseshoe vortex) will
be delayed if the boundary-layer-thickness-to-pile-diameter ratio, δ/D, is small (i.e.
a more uniform velocity distribution in the incoming boundary layer, figure 1),
presumably leading to a smaller-size horseshoe vortex. For very small values of δ/D,

the boundary layer may not even separate, and hence no horseshoe vortex will be
formed. Figure 22 shows the results of the present numerical simulations where the
Reynolds number is kept constant at ReD = 2 × 105, and δ/D is changed.
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In figure 22(a), the distance xs is the length characterizing the size of the horseshoe
vortex (see figure 1 and also the definition sketch in figure 22a). The following
observations can be made from figure 22a:

(i) The figure clearly reveals the argument given in the preceding paragraph
regarding the role of the boundary-layer-thickness-to-pile-diameter ratio: The smaller
the value of δ/D, the smaller the size of the horseshoe vortex.

(ii) It may be inferred from figure 22(a) that xs/D → 0.5 (i.e. the horseshoe vortex
ceases to exist) for very small values of δ/D (i.e. when δ/D < O(0.01)).

(iii) Furthermore, it is seen from the figure that xs/D attains a constant value,
xs/D � 0.95, for large values of δ/D, namely, for δ/D >O(0.5). This is attributed
to the finite ‘penetration’ distance of the adverse pressure gradient in front of the
pile. From the potential-flow theory, it can easily be seen that this distance is O(D).
Therefore, the size of the horseshoe vortex should be expected to be xs =O(D)
provided that δ/D is sufficiently large, as revealed by figure 22(a).

Finally, it may be noted that the data compiled by Sumer & Fredsøe (2002,
p. 154), from Baker (1979), Sumer et al. (1997) and from their own experiments
for ReD covering the range 0.3 − 4 × 104 reveals the same kind of variation as in
figure 22(a). (A direct comparison is not made here since the Reynolds number of
the present simulation is outside the Reynolds-number range of the latter data.)

Figure 22(b) depicts the amplification of the maximum bed shear stress beneath
the horseshoe vortex at the centreline, ατ = |τ0|/τ∞, plotted against δ/D. It is seen
that the variation of ατ with δ/D is similar to that in figure 22(a). This is because the
bed shear stress underneath the horseshoe vortex is directly related to the size of
the horseshoe vortex, xs/D; the larger the horseshoe vortex, the larger the bed shear
stress. Therefore the variation of ατ should be similar to that of xs/D.

5.2.2. Influence of the Reynolds number

Figure 23(a) displays the variation of the size of horseshoe-vortex, xs/D, with
the Reynolds number, obtained from the present numerical simulations where the
boundary-layer-thickness-to-pile-diameter ratio is kept constant, at δ/D =8, and ReD

is changed.
Figure 23(a) indicates that (i) xs/D increases with increasing ReD when ReD < 500

while (ii) it decreases with increasing ReD when ReD > 500.

This is interpreted as follows.
First of all, ReD = 500 corresponds to the critical Reynolds number where the so-

called primary oscillations in the horseshoe vortex (the oscillations of the separated
flow system) first emerge (Baker 1991). Baker, from his experiments, concludes that
this critical condition is reached when ReD(δ∗/D)0.5 = 800. For laminar conditions,
taking δ∗ � 1

3
δ, (Schlichting 1979, p. 28), the Reynolds number corresponding to

this critical condition is found to be ReD = 500, meaning that ReD < 500 therefore
corresponds to the case of a separating laminar boundary layer while ReD > 500
corresponds to the case of a separating turbulent boundary layer at the bed to form
the horseshoe vortex.

Now, in the former case (ReD < 500), the boundary-layer separation will be delayed
if the Reynolds number is relatively smaller (i.e. relatively larger viscosity). This is
because the boundary layer will ‘face’ larger resistance to separation and therefore the
separation will be delayed, leading to a horseshoe vortex with relatively smaller size.
(For very small Reynolds numbers, the boundary layer may not even separate, mean-
ing that the horseshoe vortex may not even form). In conclusion, for ReD < 500, the
size of the horseshoe vortex decreases with decreasing ReD , as revealed by figure 23(a).
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In the case of the separating turbulent boundary layer (ReD > 500), the role of
the Reynolds number is reversed, i.e. the size of the horseshoe vortex is decreased
with increasing Reynolds number. This is due to the increased momentum exchange
between the layers of fluid in the separating turbulent boundary layer (and therefore
due to the delay in the boundary-layer separation) with increasing Reynolds number,
a process similar to that experienced in the transition to turbulence at the separa-
tion point in the case of flow around a circular cylinder (Sumer & Fredsøe 1997,
p. 12).

It may be noted that the numerical simulations made in the present study for very
small Reynolds numbers covering ReD = 20 − 50 showed that no separation occurred
for ReD � 20, while a ‘separation eddy’ formed at the bed in front of the pile for
the range 30 � ReD � 50. In this latter case, the boundary layer first separates at
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x/D = (−1.3)–(−1.45) and then reattaches the bed at x/D = (−1.0)−(−0.75) (and
therefore no horseshoe vortex is generated), as ReD is increased from 30 to 50.

The pile Reynolds number has also a significant influence on the strength of the
horseshoe vortex. Figure 23(b) shows the amplification of the maximum bed shear
stress beneath the horseshoe vortex, ατ = |τ0|/τ∞, plotted against ReD . The observed
variation of ατ can be explained in terms of the variation of xs/D with ReD , i.e.
similar to figure 23(a). As mentioned previously in conjunction with the previous
figure, the Reynolds number ReD = 500 (where the behaviour of the variation of ατ

changes) marks the point where the horseshoe vortex flow undergoes transition to
turbulence for the tested value of δ/D, namely δ/D = 8.

5.2.3. Influence of the bed roughness

Similar calculations were carried out for rough beds with D/ks = O(1)−O(103) and
ReD = 2 × 103, 2 × 104, 2 × 105 and 106. The results (not shown here for reasons of
space) indicate that the variations with D/ks are not very extensive; xs/D varies only
by about 15 % and ατ = |τ0|/τ∞ only by 35 % when D/ks is increased by a factor of
100. Nevertheless, the results show that there is a slight trend that xs/D decreases with
decreasing D/ks (or, alternatively, with increasing roughness). This may be explained
in the same way as in figure 23(a); namely, the larger the roughness, the larger the
amount of turbulence put into the main body of the flow, and therefore the longer the
delay in the boundary-layer separation. Hence, xs/D should decrease with increasing
bed roughness (or alternatively, with decreasing D/ks). A slight decrease in ατ =
|τ0|/τ∞ with decreasing D/ks for D/ks � 10 also can be explained in the same way.

5.3. Lee-wake flow

The lee-wake vortices are caused by the rotation in the boundary layer over the
surface of the pile. The shear layers emanating from the side edges of the pile roll up
to form these vortices in the lee wake of the pile (figure 1). The flow in the lee wake is
unsteady for pile Reynolds number ReD > 40 (see e.g. Sumer & Fredsøe 1997). The
lee-wake flow is dependent mainly on ReD . In the case of a rough pile, the relative
roughness, ks/D, emerges as an additional parameter. Here, ks = the roughness of the
pile surface.

Figure 24 depicts a sequence of velocity vector and streamline plots at the horizontal
plane z/δ = 0.5, obtained from the unsteady solution of the present model, during
one half period of vortex shedding. Figure 25, on the other hand, presents a sequence
of similar pictures at a horizontal plane very close to the bed, at z/δ = 0.025, again
during one half period of vortex shedding. The Reynolds number in these simulations
was ReD = 4.6 × 104 and δ/D = 2.

(i) From figures 24 and 25, the unsteady behaviour of the wake is evident.
(ii) Furthermore, figure 25 indicates the presence of the horseshoe vortex.
(iii) It can be seen from figure 25 that the unsteady component of the flow regarding

the horseshoe vortex is essentially insignificant.
In the previously described steady-state solutions of the present flow model, the

unsteady component of the flow is suppressed in the iteration procedure of the
numerical simulations, as described in § 2.1. In this connection, an interesting question
is: How does the steady solution compare with that obtained by time averaging of
the unsteady solution (the time averaging taken over one vortex-shedding period).
Figure 26(a) shows the contour plot of the bed shear stress obtained from the steady
solution, while figure 26(b) shows that of the time-averaged bed shear stress from the
unsteady simulation.
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Figure 24. Velocity vectors and streamlines for unsteady flow simulation during one half
period of vortex shedding. Smooth bed; V = 46 cm s−1; δ = 20 cm, D =10 cm; ReD = 4.6 × 104.
Horizontal cross-section at z = 10 cm (z/δ = 0.5).

As seen, the two plots are very much the same with two exceptions: (i) the area
where there is high ‘concentration’ of flow is, to some degree, larger in the case of
the steady-flow calculations than in the unsteady-flow calculations (e.g. the area with
|τ0|/τ∞ > 4 extends to 100◦ in the former case, figure 26, while it extends to 90◦ in the
latter, figure 26b); (ii) in the wake region, a slight difference is also observed.

The fact that the two solutions are rather close to each other would enable the
large computational times to be reduced to manageable levels by conducting steady
simulations of the flow for those problems where the oscillating components of the
quantities are not very important (the reduction in the computational times can
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Horizontal cross-section at z = 0.5 cm (z/δ = 0.025).

be tremendous, by as much as an order of magnitude or even more). The steady-
state flow calculations were used for the prediction of flow in connection with the
numerical simulation of scour described in § 6. The implications of this approach for
scour calculations will be discussed in § 6.

5.4. Amplification of the bed shear stress

The distribution of the bed shear stress has been discussed earlier in conjunction
with (i) the horseshoe vortex (figures 22b and 23b) and (ii) the horseshoe vortex and
unsteady solution (figure 26).
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Figure 26. Contours of bed shear stress amplification. Smooth bed. V = 46 cm s−1;
h(∼δ) = 20 cm, D =10 cm; ReD = 4.6 × 104. (a) Steady-state-flow simulation. (b) Time-averaged
unsteady-flow simulation.

Figures 27–29 give the full picture of the bed shear stress in the form of contour
plots, obtained from the present steady-state simulations. Figure 27 illustrates the
variations as a function of δ/D, figure 28 as a function of ReD , and figure 29 as a
function of D/ks .

The following conclusions can be drawn from figures 27–29.
(i) The figures (along with figures 17 and 26) show that the amplification of

the bed shear stress is largest at the interval φ = 45◦–70◦ in which φ is the angle
measured from −x-axis. This large amplification is caused by the combined effect of
the contraction of streamlines and the horseshoe vortex.

(ii) Figure 27 indicates that the maximum amplification of the bed shear stress
gradually increases from ατ = |τ0|/τ∞ =3 to 5 when the boundary-layer-thickness-to-
diameter ratio, δ/D, is increased from 0.02 to 2. This can be explained in terms of
the horseshoe vortex. The horseshoe vortex increases in size as δ/D is increased from
0.02 to 2 (figure 22a). The larger the horseshoe vortex, the more ‘violent’ the flow
adjacent to the pile towards the pile’s side edges. Therefore, the amplification of the
bed shear stress should be larger as δ/D is increased.

(iii) Figure 28 reveals an opposite effect, as the Reynolds number, ReD, is increased
gradually from 2 × 102 to 2 × 105. This behaviour can also be explained in terms of
the horseshoe vortex. As seen from figure 23(a), the size of the horseshoe vortex does
not change radically when ReD is increased from 2 × 102 to 2 × 103. Therefore the
maximum amplification is apparently the same for these two cases. However, when
ReD is increased further, the size of the horseshoe vortex decreases (figure 23a), and
consequently the amplification of the bed shear stress will also decrease.

(iv) It may be noted that, although it is at best suggestive, this decrease in the
amplification of the bed shear stress for very large ReD , and similar results from
figure 23b, along with those from figure 23(a), may help explain (albeit, partially)
the observations that the scour depth, S/D, in the field is generally smaller than
that measured in the laboratory (Melville & Coleman 2000, figure 6.29). Melville &
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Figure 27. Contours of bed shear stress amplification for different values of δ/D.
Model results. Smooth bed. ReD =2 × 105.

Coleman list a number of other potential effects for the smaller scour depths observed
in the field.

(v) The variation in ατ = |τ0|/τ∞ in figure 29 may be explained in the same way as
in (iii) above.

6. Simulation of the scour process
6.1. Experimental observation of the development of scour

Figures 30 and 31 illustrate the way in which the scour develops in front and at
the back of the pile, respectively, in the test described in § 4.2 (Test 3). As seen, the
flow and scour processes are very violent in the beginning, but much less so at the
end of the scour development. The scour hole emerges upstream of the pile owing to
the increased extensive sediment transport under the horseshoe vortex. The eroded
sediment is initially deposited at the back of the pile. As the process continues, the
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Figure 28. Contours of bed shear stress amplification for different values of ReD .
Model results. Smooth bed. δ/D = 8.

scour depth upstream of the pile increases, and the scour hole works its way around
to the downstream side of the pile. At the same time, the sand deposited at the back
of the pile migrates downstream. The slope of the scour hole in the upstream part is
equal to the angle of repose βr � 32◦. It was observed in the test that, throughout the
scour process, the scour depth upstream of the pile was larger than that downstream
of the pile. As mentioned in § 4.2, the formation of migrating ripples outside the scour
hole indicates that the scour in the test is in the live-bed regime (see figure 32, a
photograph illustrating the scour hole attained in the equilibrium stage). Figure 32
shows that no ripples are present in the upstream part of the scour hole. As the
ripples entered the scour hole from the upstream side, they ‘disintegrate’ and slide
down the slope of the scour hole towards the pile and momentarily decrease the scour
depth. As seen from figure 32, small ripples may develop in the downstream part of
the scour hole.
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D/ks . Model results. δ/D = 8 and ReD = 2 × 104.

6.2. Numerical simulation of scour

As mentioned earlier, the steady-state flow calculations were used in the present
simulation (vortex shedding was not resolved). This is because the computational
time becomes prohibitively large for unsteady-flow calculations (§ 5.3). Clearly, there
will be consequences of the steady-state approach. This will be discussed at the end
of this section.

The water depth in the model was taken as δ = 20 cm, corresponding to the measured
boundary-layer thickness in Test 3. The pile diameter was D = 10 cm. The mean velo-
city was V = 46 cm s−1. ReD =4.6 × 104. Based on the mean grain size d50 = 0.26mm,
Nikuradse’s equivalent sand roughness was ks ≈ 2.5 · d50 = 0.65 mm. The undisturbed
Shields parameter in the scour simulation was θ = 0.11, i.e. in the live bed regime. The
ratio between the approach velocity and the critical velocity for initiation of sediment
motion was V/Vcr = 1.25.
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Figure 30. Visualization of flow and scour at the base of a circular pile in steady current.
Test 3. Upstream symmetry line. (a) t = 1 min; (b) 2 min; (c) 5 min; (d) 10 min; (e) 30min;
(f ) 1 h; (g) 2 h.
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Figure 31. Visualization of flow and scour at the base of a circular pile in steady current.
Test 3. Downstream symmetry line. (a) t = 1min; (b) 2 min; (c) 5 min; (d) 10 min; (e) 30min;
(f ) 1 h; (g) 2 h.
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Flow

Figure 32. Equilibrium scour hole in Test 3.

The bed ripples were resolved in the simulations. To trigger the development of
ripples, a perturbation was applied to the prescribed bed roughness in the first 30 s
of the simulation. This perturbation was maintained at the first three rows of the
computational cells at the inlet to ensure the continued migration of ripples into the
computational domain. The sediment transport description in the present model was
based on uniform-size sand, i.e. the sediment gradation was σg =1.0 (cf. σg = 1.5 of
Test 3, see § 4.2). The effect of sediment gradation was therefore not reproduced in
the simulation. This may have an effect on the scour depth, as will be discussed later
in this section.

(It may be noted that the present numerical-simulation exercise was done earlier in
Roulund (2000). However, in the calculations, the first term in the bracket in (25) was

inadvertently taken as

√
1 − (sin2 α tan2 β)/µ2

s rather than cosβ

√
1 − (sin2 α tan2 β)/µ2

s ,

and therefore the results reported in Roulund et al. (2000) and later partly reported
in Roulund et al. (2002) regarding the scour process are, to some extent, in error.
The numerical equilibrium scour depth found in Roulund (2000) was 20 % larger
at the upstream side and 17 % larger at the downstream side of the pile than the
corresponding values measured in the experiment).

Figure 33 shows a sequence of pictures, illustrating the time evolution of the scour
hole obtained in the present simulation.

From the simulation results, all the topographic bed features observed in Test 3 are
captured:

(i) The semi-circular shape (in plan view) of the upstream part of the scour hole
with a slope equal to the angle of repose.

(ii) The formation of a ‘bar’ downstream of the pile (the deposited sand), and its
downstream migration.

(iii) The formation of a gentler slope of the downstream side of the scour hole.
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Figure 33. Scour development. Model results. V = 46 cm s−1; D = 10 cm; δ =20 cm; ks =
0.7 mm; ReD = 4.6 × 104; d50 = 0.26 mm; σg = 1.0. Time= h:min:s. Maximum scour depth
indicated in the panels.

(iv) The formation and migration of ripples at the downstream side of the scour
hole.

Figure 34 shows the time development of the scour depth at the upstream side
(figure 34a) and at the downstream side (figure 34b) of the pile. Figure 35, on the other
hand, shows the scour-hole profiles along the upstream–downstream symmetry line.
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(i) The equilibrium scour depth is apparently underpredicted by the numerical
simulation, by about 15 % for the upstream scour depth and by about 30 % for the
downstream scour depth (figure 34).

(ii) At the initial stage of the scour process, the scour depth is predicted well by
the numerical simulation at the upstream edge of the pile (figure 34a) while it is
underpredicted at the downstream edge (figure 34b). The latter discrepancy (up to
a few minutes from the start) is due to suspended load process (figure 31a–c). The
suspended load process is not covered in the model, and therefore the model scour
depth remains rather small during this stage (figure 34b).

(iii) The scour profile predicted by the numerical simulation at the upstream side
of the scour hole agrees well with the experiment (figure 35). The downstream profile,
however, deviates from the experimental profile by about 30 %, consistent with
the result in conjunction with the downstream scour depth (figure 34b), indicating
that scour is somewhat underpredicted over an area of the downstream scour hole
extending from the pile to x/D = 3.

The difference (although not radically large) between the numerical simulation and
the experiment observed in figures 34 and 35 may, to a large extent, be attributed to
the unsteady effects, the effects which are not accounted for in the present steady-
state-flow model, namely (i) the unsteady flow due to vortex shedding in the lee wake
of the pile and (ii) that due to the horseshoe vortex in front of the pile. Measurements
show that turbulence (representing the ‘fluctuating components’ of the horseshoe-
vortex and lee-wake vortex flows) can be considerable (Sumer et al. 1997; Graf &
Yulistiyanto 1998). Although Sumer et al. (1988) showed that the lee-wake vortices
may contribute to downstream scour substantially in the case of a pipeline, to our
knowledge, no experimental study is available investigating the effect of turbulence
on scour around a pile. From the study of Sumer et al. (1988), it is inferred that
the end effect of the unsteady-flow calculation will be to increase the predicted scour
depth downstream of the pile. The same is also true for the upstream part of the
scour hole. However, a scour-simulation exercise with the unsteady-flow calculation
is unfortunately not within reach at the present time (as mentioned previously, even
with the steady-state flow calculations, a single run for the scour calculation requires
2.5 months on an Alpha 21264 workstation, § 3.3). Another effect to explain the
difference between the numerical result and the experiment may be the uncertainty
in determining the boundary-layer thickness in the experiment. The water depth in
the model was taken as δ = 20 cm, corresponding to the measured boundary-layer
thickness in Test 3, as mentioned earlier. When plotted in linear scale, the velocity
profile in figure 9 indicates that there may be an uncertainty in the boundary-layer
thickness, δ; this is towards values slightly larger than the selected value (not larger
than δ = 25 cm, however). When δ = 25 cm, this boundary-layer thickness (the flow
depth) would give a scour depth approximately 10 % larger than the predicted one,
using the empirical information on the variation of the scour depth with the flow-
depth-to-pile-diameter ratio, δ/D, given in Sumer & Fredsøe (2002, figure 3.28). This
may account for some of the discrepancy between the model and the experiment.
However, in particular, the 30 % difference between the model and the experiment
downstream of the pile cannot be accounted for in terms of the flow depth alone.

As a final note regarding the unsteady effects, the suspended-load process exhibited
in figure 31 is due to the vortex shedding where the vortices act like ‘cyclones’
or ‘tornadoes’ to pick up the sediment from the bottom and transport it in the
downstream direction, similar to the description given in Sumer, Christiansen &
Fredsøe (1992, p. 28). Therefore, in a possible suspended-load simulation, the following
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components must be present in the model: (i) the suspended-load sediment transport;
and (ii) the unsteady component of the flow (i.e. the vortex shedding).

Scour around a circular pile in steady current has been investigated extensively
in the laboratory in the past three decades. Important contributions are Melville &
Raudkivi (1977), Raudkivi & Ettema (1977, 1983), Raudkivi (1986), Melville &
Sutherland (1988), Melville & Raudkivi (1996), Ettema, Melville & Barkdoll (1998);
see also Raudkivi (1998). This work has shown that the scour depth is influenced
by various factors the most important of which are: (i) The boundary-layer-
depth-to-pile-size ratio, δ/D (the scour depth, S/D, increases with increasing δ/D);
(ii) the Shields parameter, or alternatively V/Vc in which V is the mean flow velocity
and Vc is the mean flow velocity corresponding to the critical condition at the
bed (S/D generally increases with increasing V/Vc, except that it experiences a
slight dip after the scour regime changes from the clear-water scour to the live-
bed scour); (iii) the gradation of the sediment, σg (S/D decreases with increasing σg);
(iv) the pile-diameter-to-sediment-size ratio, D/d (S/D increases with increasing D/d);
(v) the Reynolds number, ReD; and (vi) The Froude number, Fr. The reported range
of the equilibrium scour depth, S/D, is O(1–2.5) for the live-bed scour, the actual
value depending on the previously mentioned parameters.

Baker (1986) (see also Melville & Coleman 2000, p. 493) reports experimental data
for the equilibrium scour depth as a function of the sediment gradation σg and the
velocity ratio V/Vc.

The present numerical result is compared with Baker’s result corresponding to
V/Vc = 1.25 and σg = 1.3 (for the sediment with a size distribution closest to uniform)
in the following table. Note that although the Froude number for the numerical test
is Fr(= V/

√
gh) = 0.33, the simulated flow will behave like that with Fr → 0 because

the model does not have the free surface (for this reason, no value is entered in the
following table for Fr).

δ/D V/Vc σg D/d50 ReD Fr S/D

Baker’s (1986) experiment > 4 1.25 1.3 75 ∼ 105 ∼ 0.2 1.9
Present numerical simulation 2 1.25 1.0 385 4.6 × 104 – 1.1

Now, the data compiled by Melville & Sutherland (1988) indicates that S/D be-
comes independent of the pile-diameter-to-sediment-size ratio, D/d50, when D/d50 �
40. Since this ratio both in Baker’s experiment and in the present numerical simulation
is larger than 40, the parameter D/d50 does not influence the variation of S/D.
Furthermore, the Reynolds number, ReD, of the present numerical work and that
of Baker’s experiments are not radically different. The difference in the Reynolds
numbers would translate into a small difference in the size of the horseshoe vortex
(a difference less than 5 %, see figure 23a) and therefore can be disregarded. Finally,
the Froude number of the experiment (Fr = 0.2) and that of the numerical model
(Fr → 0) are so small that the effect of the Froude number also can be disregarded.

Baker’s (1986) data indicate that the normalized equilibrium scour depth S/D

(for the sediment with a size distribution closest to uniform, namely for σg = 1.3) is
S/D =1.9 (see the above table). The present numerical simulation (for sediment with a
uniform size distribution, σg = 1) predicts this value as S/D = 1.1, a value 42 % smaller
than Baker’s measurement. This discrepancy is due partly to the effect of turbulence
(described in detail in the preceding paragraphs) and partly to the relatively small
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Figure 36. Bed shear stress amplification. Model results. (a) Initial plane bed.
(b) Equilibrium scoured bed. ReD =4.6 × 104.

value of the boundary-layer-depth-to-pile-diameter ratio in the present simulation,
namely δ/D = 2 versus δ/D > 4 in Baker’s experiments (see Melville & Sutherland
1988, p. 196 and Sumer & Fredsøe 2002, p. 180 for the influence of the boundary-layer
thickness on the scour depth).

Finally, figure 36 shows the bed shear stress amplification for the initial plane bed
and that for the equilibrium scoured bed in the simulation. The bed shear stress
amplification of the equilibrium stage is reduced considerably, apparently from a
maximum value of ατ = |τ0|/τ∞ = 6 (figure 36a) to ατ =3 (figure 36b). However, note
that the bed shear stress in the scour hole over a crescent-shaped area from x/D �
− 1.5 up to x/D � +0.5 is still larger than that outside the scour hole (figure 36b). In
the case of the scoured bed (figure 36b; see also figure 35), the horseshoe vortex forms
inside the scour hole in front of the pile extending across −2 � x/D < −0.5. Just in
front of the pile, the bed shear stress underneath the horseshoe vortex is obviously
zero. It begins to pick up with the distance from the pile, and apparently reaches a
value as high as ατ = 3 at x/D = −0.7. This high value of the bed shear stress is linked
to the concentration of the flow in the horseshoe vortex at this location. However,
as the flow in the horseshoe vortex continues towards the separation line at the
upstream edge of the scour hole, the flow velocity (and therefore the bed shear stress)
will decrease. Although there is a significant amount of amplification of the bed
shear stress in the scour hole, the sediment transport ‘uphill’ owing to this bed shear
stress will be balanced by the sand slide, leading to a scour hole geometry which is in
equilibrium. Melville & Raudkivi (1977) obtained estimates of mean bed shear stress
from the mean velocity measurements for three cases, namely on the initial flat bed,
intermediate scour hole and the final equilibrium scour hole. The bed shear stress
measurements in the two cases of scour holes are particularly interesting. Although no
direct comparison between the present numerical findings and Melville & Raudkivi’s
results could be made, Melville & Raudkivi’s results show that there exists a crescent-
shaped area inside the scour hole in front of the pile where the bed shear stress is
larger than the undisturbed bed shear stress, in exactly the same fashion as in the
present numerical results (figure 36b).



398 A. Roulund, B. M. Sumer, J. Fredsoe and J. Michelsen

7. Conclusions
(i) A three-dimensional hydrodynamic model, EllipSys3D, incorporated with the

k–ω turbulence model was chosen to simulate the flow around a vertical circular pile
exposed to a steady current. The model, tested and validated against the experimental
data (from the present study and from others), was used to study the horseshoe vortex
and lee-wake flow processes. The influence of three parameters, the boundary-layer
thickness, the Reynolds number and the bed roughness, on the horseshoe vortex
was investigated. Likewise, the influence of the unsteady solution on the previously
mentioned flow processes was also investigated.

(ii) The numerical results show that the size of the horseshoe vortex and the
bed shear stress under the horseshoe vortex increase with increasing boundary-layer-
thickness-to-pile-diameter ratio, δ/D, until the latter quantity reaches a certain value.
Beyond that value, these quantities do not vary with increasing δ/D. The results
also show that the horseshoe vortex ceases to exist when δ/D is very small. For
ReD = 2 × 105, it was found that the horseshoe vortex does not exist when δ/D <

O(0.01).
(iii) The influence of the Reynolds number, ReD, on the horseshoe vortex was

also found to be significant. The results indicate that the size of the horseshoe vortex
and the bed shear stress under the horseshoe vortex vary significantly with ReD . It
was found that the value of ReD at which these quantities attain their maximum
values coincides with the critical value of the Reynolds number associated with the
transition to turbulence in the horseshoe vortex. In the laminar regime, the size of
the horseshoe vortex and the bed shear stress were found to increase with increasing
ReD , while, in the turbulent regime, the converse is true.

(iv) The influence of the bed roughness on the horseshoe vortex was found to be
not very extensive.

(v) The time-averaged bed shear stress obtained from the unsteady solution was
found to be rather close to that obtained from the steady solution of the model,
a result that would enable the large computational times for unsteady simulations
to be reduced greatly (by as much as an order of magnitude) by conducting steady
simulations of the flow. This is particularly important for numerical computations of
scour processes where the computational time would be prohibitively large otherwise.

(vi) The bed shear stress calculations conducted for various values of the
governing parameters (namely, δ/D, ReD and the bed roughness) show that (a) the
amplification of the bed shear stress near the pile is largest at φ =45◦–70◦ (in which
φ is the angle measured from the main flow direction), and (b) the amplification can
reach very large values (as large as O(10)), depending on the previously mentioned
parameters.

(vii) The flow model (with steady solution) was coupled with a morphologic model
to calculate scour around a vertical circular pile exposed to a steady current.

(viii) The results show that the present numerical simulation captures all the main
features of the scour process.

(ix) It was found that the equilibrium scour depth obtained from the simulation
agrees reasonably well with the experiment for scour upstream of the pile (the
computed scour depth being 15 % smaller than the scour depth obtained in the
experiment) while some differences (as much as 30 % underpredicted) are observed
for scour downstream of the pile. This was attributed to the steady-state flow model
where the unsteady effects (the fluctuating components of horseshoe vortex and
lee-wake vortex flows) are not accounted for.
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(x) The calculations also show that the amplification of the bed shear stress
around the pile in the equilibrium state of scour is reduced considerably with respect
to that experienced at the initial stage where the bed is plane.

This study was partially funded by the Commission of the European Communities,
Directorate-General XII for Science, Research and Development Program Marine
Science and Technology (MAST III) Contract no. MAS3-CT97-0097, Scour Around
Coastal Structures (SCARCOST), FP5 specific program ‘Energy, Environment and
Sustainable Development’ Contract No. EVK3-CT-2000-00038, Liquefaction Around
Marine Structures LIMAS and Framework Program ‘Computational Hydrodynamics’
of the Danish Technical Research Council (STVF).

Martin Dixen, conducted the supplementary tests described in § 5.10.
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